Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 16: 926518, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865113

RESUMO

Duchenne muscular dystrophy (DMD) is generally regarded as a muscle-wasting disease. However, human patients and animal models of DMD also frequently display non-progressive cognitive deficits and high comorbidity with neurodevelopmental disorders, suggesting impaired central processing. Previous studies have identified the cerebellar circuit, and aberrant inhibitory transmission in Purkinje cells, in particular, as a potential site of dysfunction in the central nervous system (CNS). In this work, we investigate potential dysfunction in the output of the cerebellum, downstream of Purkinje cell (PC) activity. We examined synaptic transmission and firing behavior of excitatory projection neurons of the cerebellar nuclei, the primary output of the cerebellar circuit, in juvenile wild-type and mdx mice, a common mouse model of DMD. Using immunolabeling and electrophysiology, we found a reduced number of PC synaptic contacts, but no change in postsynaptic GABAA receptor expression or clustering in these cells. Furthermore, we found that the replenishment rate of synaptic vesicles in Purkinje terminals is reduced in mdx neurons, suggesting that dysfunction at these synapses may be primarily presynaptic. We also found changes in the excitability of cerebellar nuclear neurons. Specifically, we found greater spontaneous firing but reduced evoked firing from a hyperpolarized baseline in mdx neurons. Analysis of action potential waveforms revealed faster repolarization and greater after-hyperpolarization of evoked action potentials in mdx neurons, suggesting an increased voltage- or calcium- gated potassium current. We did not find evidence of dystrophin protein or messenger RNA (mRNA) expression in wild-type nuclear neurons, suggesting that the changes observed in these cells are likely due to the loss of dystrophin in presynaptic PCs. Together, these data suggest that the loss of dystrophin reduces the dynamic range of synaptic transmission and firing in cerebellar nuclear neurons, potentially disrupting the output of the cerebellar circuit to other brain regions and contributing to cognitive and neurodevelopmental deficits associated with DMD.

2.
Aging Cell ; 21(7): e13648, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35657768

RESUMO

While whole-body irradiation (WBI) can induce some hallmarks of immune aging, (re)activation of persistent microbial infection also occurs following WBI and may contribute to immune effects of WBI over the lifespan. To test this hypothesis in a model relevant to human immune aging, we examined separate and joint effects of lifelong latent murine cytomegalovirus (MCMV) and of early-life WBI over the course of the lifespan. In late life, we then measured the response to a West Nile virus (WNV) live attenuated vaccine, and lethal WNV challenge subsequent to vaccination. We recently published that a single dose of non-lethal WBI in youth, on its own, was not sufficient to accelerate aging of the murine immune system, despite widespread DNA damage and repopulation stress in hematopoietic cells. However, 4Gy sub-lethal WBI caused manifest reactivation of MCMV. Following vaccination and challenge with WNV in the old age, MCMV-infected animals experiencing 4Gy, but not lower, dose of sub-lethal WBI in youth had reduced survival. By contrast, old irradiated mice lacking MCMV and MCMV-infected, but not irradiated, mice were both protected to the same high level as the old non-irradiated, uninfected controls. Analysis of the quality and quantity of anti-WNV immunity showed that higher mortality in MCMV-positive WBI mice correlated with increased levels of MCMV-specific immune activation during WNV challenge. Moreover, we demonstrate that infection, including that by WNV, led to MCMV reactivation. Our data suggest that MCMV reactivation may be an important determinant of increased late-life mortality following early-life irradiation and late-life acute infection.


Assuntos
Muromegalovirus , Vírus do Nilo Ocidental , Adolescente , Animais , Citomegalovirus , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Vacinação
3.
Immunogenetics ; 74(6): 513-525, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35562487

RESUMO

Leukocyte immunoglobulin-like receptor B1 (LILRB1) is widely expressed on various immune cells and the engagement of LILRB1 to HLA class I and pathogen-derived proteins can modulate the immune response. In the current study, 108 LILRB1 alleles were identified by screening the LILRB1 locus from the 1000 Genomes Phase 3 database. Forty-six alleles that occurred in three or more individuals encode 28 LILRB1 allotypes, and the inferred LILRB1 allotypes were then grouped into 9 LILRB1 D1-D2 variants for further analysis. We found that variants 1, 2, and 3 represent the three most frequent LILRB1 D1-D2 variants and the nine variants show frequency differences in populations. The binding assay demonstrated that variant 1 bound to HLA class I with the highest avidity, and all tested LILRB1 D1-D2 variants bound to HLA-C with lower avidity than to HLA-A and -B. Locus-specific polymorphisms at positions 183, 189, and 268 in HLA class I and dimorphisms in HLA-A (positions 207 and 253) and in HLA-B (position 194) affect their binding to LILRB1. Notably, the electrostatic interaction plays a critical role in the binding of LILRB1 to HLA class I as revealed by electrostatic analysis and by comparison of different binding avidities caused by polymorphisms at positions 72 and 103 of LILRB1. In this paper, we present a comprehensive study of the population genetics and binding abilities of LILRB1. The data will help us better understand the LILRB1-related diversity of the immune system and lay a foundation for functional studies.


Assuntos
Antígenos CD , Receptores Imunológicos , Humanos , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/genética , Receptores Imunológicos/genética , Alelos , Antígenos HLA-A
4.
Cancer Immunol Res ; 10(5): 558-570, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35263761

RESUMO

γδ T cells stimulated by phosphoantigens (pAg) are potent effectors that secrete Th1 cytokines and kill tumor cells. Consequently, they are considered candidates for use in cancer immunotherapy. However, they have proven only moderately effective in several clinical trials. We studied the consequences of pAg-stimulated γδ T-cell interactions with natural killer (NK) cells and CD8+ T cells, major innate and adaptive effectors, respectively. We found that pAg-stimulated γδ T cells suppressed NK-cell responses to "missing-self" but had no effect on antigen-specific CD8+ T-cell responses. Extensive analysis of the secreted cytokines showed that pAg-stimulated γδ T cells had a proinflammatory profile. CMV-pp65-specific CD8+ T cells primed with pAg-stimulated γδ T cells showed little effect on responses to pp65-loaded target cells. By contrast, NK cells primed similarly with γδ T cells had impaired capacity to degranulate and produce IFNγ in response to HLA class I-deficient targets. This effect depended on BTN3A1 and required direct contact between NK cells and γδ T cells. γδ T-cell priming of NK cells also led to a downregulation of NKG2D and NKp44 on NK cells. Every NK-cell subset was affected by γδ T cell-mediated immunosuppression, but the strongest effect was on KIR+NKG2A- NK cells. We therefore report a previously unknown function for γδ T cells, as brakes of NK-cell responses to "missing-self." This provides a new perspective for optimizing the use of γδ T cells in cancer immunotherapy and for assessing their role in immune responses to pAg-producing pathogens. See related Spotlight by Kabelitz, p. 543.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T gama-delta , Antígenos CD , Butirofilinas , Citocinas , Humanos , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T Citotóxicos/imunologia
5.
J Neurosci ; 42(10): 2103-2115, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35064002

RESUMO

Duchenne muscular dystrophy (DMD), the most common form of childhood muscular dystrophy, is caused by mutations in the dystrophin gene. In addition to debilitating muscle degeneration, patients display a range of cognitive deficits thought to result from the loss of dystrophin normally expressed in the brain. While the function of dystrophin in muscle tissue is well characterized, its role in the brain is still poorly understood. The highest expression of dystrophin in the mouse brain is in cerebellar Purkinje cells (PCs), where it colocalizes with GABAA receptor clusters. Using ex vivo electrophysiological recordings from connected molecular layer interneuron (MLI)-PC pairs, we investigated changes in inhibitory synaptic transmission caused by dystrophin deficiency. In male mdx mice (which lack long-form dystrophin), we found that responses at MLI-PC pairs were reduced by ∼60% because of both decreased quantal response amplitude and a reduced number of functional vesicle release sites. Using electron microscopy, we found significantly fewer and smaller anatomically defined inhibitory synapses contacting the soma of PCs in mdx mice, suggesting that dystrophin may play a critical role in synapse formation and/or maintenance. Functionally, we found reduced MLI-evoked pauses in PC firing in acute slices. In vivo recordings from awake mdx mice showed increased sensory-evoked simple spike firing in positively modulating PCs, consistent with reduced feedforward inhibition, but no change in negatively modulating PCs. These data suggest that dystrophin deficiency in PCs disrupts inhibitory signaling in the cerebellar circuit and PC firing patterns, potentially contributing to cognitive and motor deficits observed in mdx mice and DMD patients.SIGNIFICANCE STATEMENT Duchenne muscular dystrophy (DMD) is primarily characterized by progressive muscle weakening caused by genetic mutations in the gene for dystrophin. Dystrophin is also normally expressed in the CNS, and DMD patients experience a range of nonprogressive cognitive deficits. The pathophysiology of CNS neurons resulting from loss of dystrophin and the function of dystrophin in neurons are still poorly understood. Using cerebellar PCs as a model, we found that the loss of dystrophin specifically disrupts the number and strength of inhibitory synaptic connections, suggesting that dystrophin participates in formation and/or maintenance of these synapses. This work provides insight into the function of dystrophin in the CNS and establishes neuronal and synaptic dysfunction, which may underlie cognitive deficits in DMD.


Assuntos
Distrofia Muscular de Duchenne , Células de Purkinje , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Receptores de GABA-A/metabolismo , Transmissão Sináptica/fisiologia
6.
PeerJ ; 9: e12258, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760351

RESUMO

Killer Immunoglobulin-like Receptors (KIR) comprise a diverse, highly polymorphic family of cell-surface glycoproteins that are principally expressed by Natural Killer (NK) cells. These innate immune lymphocytes fulfill vital functions in human reproduction and immune responses to viral infection. KIR3DL2 is an inhibitory NK cell receptor that recognizes a common epitope of the HLA-A3 and HLA-A11 class I glycoproteins of the major histocompatibility complex. KIR3DL2 also binds exogenous DNA containing the CpG motif. This interaction causes internalization of the KIR-DNA. Exogenous CpG-DNA typically activates NK cells, but the specificity of KIR3DL2-DNA binding and internalization is unclear. We hypothesized that KIR3DL2 binds exogenous DNA in a sequence-specific manner that differentiates pathogen DNA from self-DNA. In testing this hypothesis, we surveyed octameric CpG-DNA sequences in the human genome, and in reference genomes of all bacteria, fungi, viruses, and parasites, with focus on medically relevant species. Among all pathogens, the nucleotides flanking CpG motifs in the genomes of parasitic worms that infect humans are most divergent from those in the human genome. We cultured KIR3DL2+NKL cells with the commonest CpG-DNA sequences in either human or pathogen genomes. DNA uptake was negatively correlated with the most common CpG-DNA sequences in the human genome. These CpG-DNA sequences induced inhibitory signaling in KIR3DL2+NKL cells. In contrast, KIR3DL2+NKL cells lysed more malignant targets and produced more IFNγ after culture with CpG-DNA sequences prevalent in parasitic worms. By applying functional immunology to evolutionary genomics, we conclude that KIR3DL2 allows NK cells to differentiate self-DNA from pathogen DNA.

7.
PLoS One ; 15(5): e0233020, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32437355

RESUMO

Signaling through the endocannabinoid system is critical to proper functioning of the cerebellar circuit. However, most studies have focused on signaling through cannabinoid type 1 (CB1) receptors, while relatively little is known about signaling through type 2 (CB2) receptors. We show that functional CB2 receptors are expressed in Purkinje cells using a combination of immunohistochemistry and patch-clamp electrophysiology in juvenile mice. Pharmacological activation of CB2 receptors significantly reduces inhibitory synaptic responses and currents mediated by photolytic uncaging of RuBi-GABA in Purkinje cells. CB2 receptor activation does not change the paired-pulse ratio of inhibitory responses and its effects are blocked by inclusion of GDP-ß-S in the internal solution, indicating a postsynaptic mechanism of action. However, CB2 receptors do not contribute to depolarization induced suppression of inhibition (DSI), indicating they are not activated by endocannabinoids synthesized and released from Purkinje cells using this protocol. This work demonstrates that CB2 receptors inhibit postsynaptic GABAA receptors by a postsynaptic mechanism in Purkinje cells. This represents a novel mechanism by which CB2 receptors may modulate neuronal and circuit function in the central nervous system.


Assuntos
Células de Purkinje/fisiologia , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Receptores de GABA-A/metabolismo , Animais , Canabinoides/farmacologia , Cicloexanos/farmacologia , Feminino , Técnicas de Inativação de Genes , Masculino , Camundongos , Morfolinas/farmacologia , Técnicas de Patch-Clamp , Quinolinas/farmacologia , Receptor CB2 de Canabinoide/agonistas , Membranas Sinápticas/fisiologia , Transmissão Sináptica
8.
Sci Rep ; 10(1): 2168, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034189

RESUMO

Unipolar brush cells (UBCs) are excitatory granular layer interneurons in the vestibulocerebellum. Here we assessed motor coordination and balance to investigate if deletion of acid-sensing ion channel 5 (Asic5), which is richly expressed in type II UBCs, is sufficient to cause ataxia. The possible cellular mechanism underpinning ataxia in this global Asic5 knockout model was elaborated using brain slice electrophysiology. Asic5 deletion impaired motor performance and decreased intrinsic UBC excitability, reducing spontaneous action potential firing by slowing maximum depolarization rate. Reduced intrinsic excitability in UBCs was partially compensated by suppression of the magnitude and duration of delayed hyperpolarizing K+ currents triggered by glutamate. Glutamate typically stimulates burst firing subsequent to this hyperpolarization in normal type II UBCs. Burst firing frequency was elevated in knockout type II UBCs because it was initiated from a more depolarized potential compared to normal cells. Findings indicate that Asic5 is important for type II UBC activity and that loss of Asic5 contributes to impaired movement, likely, at least in part, due to altered temporal processing of vestibular input.


Assuntos
Canais Iônicos Sensíveis a Ácido/genética , Potenciais de Ação , Ataxia Cerebelar/metabolismo , Neurônios/metabolismo , Animais , Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Neurônios/fisiologia , Potássio/metabolismo
9.
Life Sci Alliance ; 2(6)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31723004

RESUMO

During development, NK cells are "educated" to respond aggressively to cells with low surface expression of HLA class I, a hallmark of malignant and infected cells. The mechanism of education involves interactions between inhibitory killer immunoglobulin-like receptors (KIRs) and specific HLA epitopes, but the details of this process are unknown. Because of the genetic diversity of HLA class I genes, most people have NK cells that are incompletely educated, representing an untapped source of human immunity. We demonstrate how mature peripheral KIR3DL1+ human NK cells can be educated in vitro. To accomplish this, we trained NK cells expressing the inhibitory KIR3DL1 receptor by co-culturing them with target cells that expressed its ligand, Bw4+HLA-B. After this training, KIR3DL1+ NK cells increased their inflammatory and lytic responses toward target cells lacking Bw4+HLA-B, as though they had been educated in vivo. By varying the conditions of this basic protocol, we provide mechanistic and translational insights into the process NK cell education.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Receptores KIR3DL1/metabolismo , Diferenciação Celular/fisiologia , Epitopos/imunologia , Epitopos/metabolismo , Genes MHC Classe I , Antígenos HLA-B/genética , Antígenos HLA-B/imunologia , Humanos , Ligantes , Receptores KIR/genética , Receptores KIR3DL1/imunologia
10.
Sci Rep ; 9(1): 16683, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723152

RESUMO

Many neurons, including cerebellar granule cells, exhibit a tonic GABA current mediated by extrasynaptic GABAA receptors. This current is a critical regulator of firing and the target of many clinically relevant compounds. Using a combination of patch clamp electrophysiology and photolytic uncaging of RuBi-GABA we show that GABAB receptors are tonically active and enhance extrasynaptic GABAA receptor currents in cerebellar granule cells. This enhancement is not associated with meaningful changes in GABAA receptor potency, mean channel open-time, open probability, or single-channel current. However, there was a significant (~40%) decrease in the number of channels participating in the GABA uncaging current and an increase in receptor desensitization. Furthermore, we find that adenylate cyclase, PKA, CaMKII, and release of Ca2+ from intracellular stores are necessary for modulation of GABAA receptors. Overall, this work reveals crosstalk between postsynaptic GABAA and GABAB receptors and identifies the signaling pathways and mechanisms involved.


Assuntos
Cerebelo/fisiologia , Grânulos Citoplasmáticos/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Neurônios/fisiologia , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Sinapses/fisiologia , Animais , Cerebelo/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Ácido gama-Aminobutírico
11.
J Physiol ; 597(12): 3167-3181, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31020998

RESUMO

KEY POINTS: Inhibition of synaptic responses by activation of presynaptic cannabinoid type-1 (Cb1) receptors is reduced at parallel fibre synapses in the cerebellum following 4 Hz stimulation. Activation of adenylyl cyclase is necessary and sufficient for down-regulation of Cb1 receptors induced by 4 Hz stimulation. 4 Hz stimulation reduces Cb1 receptor function by (i) increasing the rate of endocannabinoid clearance from the synapse and (ii) decreasing expression of Cb1 receptors. ABSTRACT: Cannabinoid type-1 receptors (Cb1R) are expressed in the presynaptic membrane of many synapses, including parallel fibre-Purkinje cell synapses in the cerebellum, where they are involved in short- and long-term plasticity of synaptic responses. We show that Cb1R expression itself is a plastic property of the synapse regulated by physiological activity patterns. We made patch clamp recordings from Purkinje cells in cerebellar slices and assessed Cb1R activity by measuring depolarization-induced suppression of excitation (DSE). We find that DSE is normally stable at parallel fibre synapses but, following 4 Hz stimulation, DSE is persistently reduced and recovers more rapidly. Using a combination of electrophysiology, pharmacology and biochemistry, we show that changes in DSE are a result of the reduced expression of Cb1Rs and increased degradation of endocannabinoids by monoacylglycerol lipase. Long-term changes in presynaptic Cb1R expression may alter other forms of Cb1R-dependent plasticity at parallel fibre synapses, priming or inhibiting the circuit for associative learning.


Assuntos
Receptor CB1 de Canabinoide/fisiologia , Receptores Pré-Sinápticos/fisiologia , Sinapses/fisiologia , Animais , Cerebelo/fisiologia , Feminino , Técnicas In Vitro , Masculino , Camundongos Endogâmicos C57BL , Células de Purkinje/fisiologia
12.
J Neurophysiol ; 121(5): 1896-1905, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30892973

RESUMO

Many synapses, including parallel fiber synapses in the cerebellum, express presynaptic GABAA receptors. However, reports of the functional consequences of presynaptic GABAA receptor activation are variable across synapses, from inhibition to enhancement of transmitter release. We find that presynaptic GABAA receptor function is bidirectional at parallel fiber synapses depending on GABA concentration and modulation of GABAA receptors in mice. Activation of GABAA receptors by low GABA concentrations enhances glutamate release, whereas activation of receptors by higher GABA concentrations inhibits release. Furthermore, blocking GABAB receptors reduces GABAA receptor currents and shifts presynaptic responses toward greater enhancement of release across a wide range of GABA concentrations. Conversely, enhancing GABAA receptor currents with ethanol or neurosteroids shifts responses toward greater inhibition of release. The ability of presynaptic GABAA receptors to enhance or inhibit transmitter release at the same synapse depending on activity level provides a new mechanism for fine control of synaptic transmission by GABA and may explain conflicting reports of presynaptic GABAA receptor function across synapses. NEW & NOTEWORTHY GABAA receptors are widely expressed at presynaptic terminals in the central nervous system. However, previous reports have produced conflicting results on the function of these receptors at different synapses. We show that presynaptic GABAA receptor function is strongly dependent on the level of receptor activation. Low levels of receptor activation enhance transmitter release, whereas higher levels of activation inhibit release at the same synapses. This provides a novel mechanism by which presynaptic GABAA receptors fine-tune synaptic transmission.


Assuntos
Terminações Pré-Sinápticas/metabolismo , Receptores de GABA-A/metabolismo , Potenciais Sinápticos , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Exocitose , Feminino , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Terminações Pré-Sinápticas/fisiologia
13.
Synapse ; 72(5): e22027, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29360168

RESUMO

Parallel fiber synapses in the cerebellum express a wide range of presynaptic receptors. However, presynaptic receptor expression at individual parallel fiber synapses is quite heterogeneous, suggesting physiological mechanisms regulate presynaptic receptor expression. We investigated changes in presynaptic GABAB receptors at parallel fiber-stellate cell synapses in acute cerebellar slices from juvenile mice. GABAB receptor-mediated inhibition of excitatory postsynaptic currents (EPSCs) is remarkably diverse at these synapses, with transmitter release at some synapses inhibited by >50% and little or no inhibition at others. GABAB receptor-mediated inhibition was significantly reduced following 4 Hz parallel fiber stimulation but not after stimulation at other frequencies. The reduction in GABAB receptor-mediated inhibition was replicated by bath application of forskolin and blocked by application of a PKA inhibitor, suggesting activation of adenylyl cyclase and PKA are required. Immunolabeling for an extracellular domain of the GABAB2 subunit revealed reduced surface expression in the molecular layer after exposure to forskolin. GABAB receptor-mediated inhibition of action potential evoked calcium transients in parallel fiber varicosities was also reduced following bath application of forskolin, confirming presynaptic receptors are responsible for the reduced EPSC inhibition. These data demonstrate that presynaptic GABAB receptor expression can be a plastic property of synapses, which may compliment other forms of synaptic plasticity. This opens the door to novel forms of receptor plasticity previously confined primarily to postsynaptic receptors.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Cerebelo/citologia , Fibras Nervosas/fisiologia , Receptores de GABA-B/metabolismo , Receptores Pré-Sinápticos/metabolismo , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Biofísica , Cálcio/metabolismo , Estimulação Elétrica , Feminino , GABAérgicos/farmacologia , Técnicas In Vitro , Masculino , Camundongos , Fibras Nervosas/efeitos dos fármacos , Técnicas de Patch-Clamp , Sinapses/efeitos dos fármacos
14.
J Immunol ; 200(3): 1146-1158, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29263215

RESUMO

The extent of NK cell activity during the innate immune response affects downstream immune functions and, ultimately, the outcome of infectious or malignant disease. However, the mechanisms that terminate human NK cell responses have yet to be defined. When activation receptors expressed on NK cell surfaces bind to ligands on diseased cells, they initiate a signal that is propagated by a number of intracellular kinases, including Zap70 and Syk, eventually leading to NK cell activation. We assayed Zap70 and Syk content in NK cells from healthy human donors and identified a subset of NK cells with unusually low levels of these two kinases. We found that this Zap70lowSyklow subset consisted of NK cells expressing a range of surface markers, including CD56hi and CD56low NK cells. Upon in vitro stimulation with target cells, Zap70lowSyklow NK cells failed to produce IFN-γ and lysed target cells at one third the capacity of Zap70hiSykhi NK cells. We determined two independent in vitro conditions that induce the Zap70lowSyklow phenotype in NK cells: continuous stimulation with activation beads and DNA damage. The expression of inhibitory receptors, including NKG2A and inhibitory killer Ig-like receptors (KIRs), was negatively correlated with the Zap70lowSyklow phenotype. Moreover, expression of multiple KIRs reduced the likelihood of Zap70 downregulation during continuous activation, regardless of whether NK cells had been educated through KIR-HLA interactions in vivo. Our findings show that human NK cells are able to terminate their functional activity without the aid of other immune cells through the downregulation of activation kinases.


Assuntos
Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Quinase Syk/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo , Células Cultivadas , Dano ao DNA/genética , Regulação para Baixo/imunologia , Humanos , Imunidade Inata/imunologia , Interferon gama/biossíntese , Ativação Linfocitária/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/biossíntese , Receptores KIR/biossíntese , Quinase Syk/genética , Proteína-Tirosina Quinase ZAP-70/genética
15.
Cell Rep ; 19(7): 1394-1405, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28514659

RESUMO

HLA-B∗46:01 was formed by an intergenic mini-conversion, between HLA-B∗15:01 and HLA-C∗01:02, in Southeast Asia during the last 50,000 years, and it has since become the most common HLA-B allele in the region. A functional effect of the mini-conversion was introduction of the C1 epitope into HLA-B∗46:01, making it an exceptional HLA-B allotype that is recognized by the C1-specific natural killer (NK) cell receptor KIR2DL3. High-resolution mass spectrometry showed that HLA-B∗46:01 has a low-diversity peptidome that is distinct from those of its parents. A minority (21%) of HLA-B∗46:01 peptides, with common C-terminal characteristics, form ligands for KIR2DL3. The HLA-B∗46:01 peptidome is predicted to be enriched for peptide antigens derived from Mycobacterium leprae. Overall, the results indicate that the distinctive peptidome and functions of HLA-B∗46:01 provide carriers with resistance to leprosy, which drove its rapid rise in frequency in Southeast Asia.


Assuntos
Antígenos HLA-B/metabolismo , Peptídeos/metabolismo , Proteoma/metabolismo , Receptores KIR2DL3/metabolismo , Motivos de Aminoácidos , Citotoxicidade Imunológica , Antígenos HLA-B/química , Antígenos HLA-C , Humanos , Células Matadoras Naturais/imunologia , Ligantes , Modelos Biológicos , Ligação Proteica , Recombinação Genética/genética
16.
J Physiol ; 594(13): 3651-66, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27061582

RESUMO

KEY POINTS: Many excitatory synapses co-express presynaptic GABAA and GABAB receptors, despite their opposing actions on synaptic transmission. It is still unclear how co-activation of these receptors modulates synapse function. We measured presynaptic GABA receptor function at parallel fibre synapses onto stellate cells in the cerebellum using whole-cell patch-clamp recording and photolytic uncaging of RuBi-GABA. Activation of presynaptic GABA receptors results in a transient (∼100 ms) enhancement of synaptic transmission (mediated by GABAA receptors) followed by a long lasting (>500 ms) inhibition of transmission (mediated by GABAB receptors). When activated just prior to high-frequency trains of stimulation, presynaptic GABAA and GABAB receptors work together to reduce short-term facilitation/enhance depression, altering the filtering properties of synaptic transmission. Inhibition of synaptic transmission by GABAB receptors is more sensitive to GABA than enhancement by GABAA receptors, suggesting GABAB receptors may be activated by ambient GABA or release from greater distances. ABSTRACT: GABAA and GABAB receptors are co-expressed at many presynaptic terminals in the central nervous system. Previous studies have shown that GABAA receptors typically enhance vesicle release while GABAB receptors inhibit release. However, it is not clear how the competing actions of these receptors modulate synaptic transmission when co-activated, as is likely in vivo. We investigated this question at parallel fibre synapses in the cerebellum, which co-express presynaptic GABAA and GABAB receptors. In acute slices from C57BL/6 mice, we find that co-activation of presynaptic GABA receptors by photolytic uncaging of RuBi-GABA has a biphasic effect on EPSC amplitudes recorded from stellate cells. Synchronous and asynchronous EPSCs evoked within ∼100 ms of GABA uncaging were increased, while EPSCs evoked ∼300-600 ms after GABA uncaging were reduced compared to interleaved control sweeps. We confirmed these effects are presynaptic by measuring the paired-pulse ratio, variance of EPSC amplitudes, and response probability. During trains of high-frequency stimulation GABAA and GABAB receptors work together (rather than oppose one another) to reduce short-term facilitation when GABA is uncaged just prior to the onset of stimulation. We also find that GABAB receptor-mediated inhibition can be elicited by lower GABA concentrations than GABAA receptor-mediated enhancement of EPSCs, suggesting GABAB receptors may be selectively activated by ambient GABA or release from more distance synapses. These data suggest that GABA, acting through both presynaptic GABAA and GABAB receptors, modulate the amplitude and short-term plasticity of excitatory synapses, a result not possible from activation of either receptor type alone.


Assuntos
Receptores de GABA-A/fisiologia , Receptores de GABA-B/fisiologia , Transmissão Sináptica/fisiologia , Animais , Cerebelo/efeitos dos fármacos , Cerebelo/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Técnicas In Vitro , Masculino , Camundongos Endogâmicos C57BL , Ácido gama-Aminobutírico/farmacologia
17.
Aging Cell ; 15(4): 686-93, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27072188

RESUMO

Aging-related decline in immunity is believed to be the main driver behind decreased vaccine efficacy and reduced resistance to infections in older adults. Unrepaired DNA damage is known to precipitate cellular senescence, which was hypothesized to be the underlying cause of certain age-related phenotypes. Consistent with this, some hallmarks of immune aging were more prevalent in individuals exposed to whole-body irradiation (WBI), which leaves no anatomical repository of undamaged hematopoietic cells. To decisively test whether and to what extent WBI in youth will leave a mark on the immune system as it ages, we exposed young male C57BL/6 mice to sublethal WBI (0.5-4 Gy), mimicking human survivor exposure during nuclear catastrophe. We followed lymphocyte homeostasis thorough the lifespan, response to vaccination, and ability to resist lethal viral challenge in the old age. None of the irradiated groups showed significant differences compared with mock-irradiated (0 Gy) animals for the parameters measured. Even the mice that received the highest dose of sublethal WBI in youth (4 Gy) exhibited equilibrated lymphocyte homeostasis, robust T- and B-cell responses to live attenuated West Nile virus (WNV) vaccine and full survival following vaccination upon lethal WNV challenge. Therefore, a single dose of nonlethal WBI in youth, resulting in widespread DNA damage and repopulation stress in hematopoietic cells, leaves no significant trace of increased immune aging in a lethal vaccine challenge model.


Assuntos
Envelhecimento/imunologia , Dano ao DNA , Imunidade , Animais , Relação Dose-Resposta à Radiação , Homeostase , Memória Imunológica , Masculino , Camundongos Endogâmicos C57BL , Fatores de Risco , Análise de Sobrevida , Linfócitos T/metabolismo , Vacinação , Febre do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/virologia , Vacinas contra o Vírus do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/fisiologia , Irradiação Corporal Total
18.
Int J Radiat Biol ; 92(2): 59-70, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26857121

RESUMO

PURPOSE: An interlaboratory comparison of radiation dosimetry was conducted to determine the accuracy of doses being used experimentally for animal exposures within a large multi-institutional research project. The background and approach to this effort are described and discussed in terms of basic findings, problems and solutions. METHODS: Dosimetry tests were carried out utilizing optically stimulated luminescence (OSL) dosimeters embedded midline into mouse carcasses and thermal luminescence dosimeters (TLD) embedded midline into acrylic phantoms. RESULTS: The effort demonstrated that the majority (4/7) of the laboratories was able to deliver sufficiently accurate exposures having maximum dosing errors of ≤5%. Comparable rates of 'dosimetric compliance' were noted between OSL- and TLD-based tests. Data analysis showed a highly linear relationship between 'measured' and 'target' doses, with errors falling largely between 0 and 20%. Outliers were most notable for OSL-based tests, while multiple tests by 'non-compliant' laboratories using orthovoltage X-rays contributed heavily to the wide variation in dosing errors. CONCLUSIONS: For the dosimetrically non-compliant laboratories, the relatively high rates of dosing errors were problematic, potentially compromising the quality of ongoing radiobiological research. This dosimetry effort proved to be instructive in establishing rigorous reviews of basic dosimetry protocols ensuring that dosing errors were minimized.


Assuntos
Laboratórios/estatística & dados numéricos , Exposição à Radiação/análise , Contagem Corporal Total/instrumentação , Irradiação Corporal Total/instrumentação , Absorção de Radiação , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Camundongos , Exposição à Radiação/estatística & dados numéricos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Contagem Corporal Total/métodos , Contagem Corporal Total/estatística & dados numéricos , Irradiação Corporal Total/estatística & dados numéricos
19.
J Immunol ; 193(3): 1451-8, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24990082

RESUMO

Lymphocytes are sensitive to ionizing radiation and naive lymphocytes are more radiosensitive than their memory counterparts. Less is known about radiosensitivity of memory cell subsets. We examined the radiosensitivity of naive (TN), effector memory (TEM), and central memory (TCM) T cell subsets in C57BL/6 mice and found TEM to be more resistant to radiation-induced apoptosis than either TN or TCM. Surprisingly, we found no correlation between the extent of radiation-induced apoptosis in T cell subsets and 1) levels of pro- and antiapoptotic Bcl-2 family members or 2) the H2AX content and maximal γH2AX fold change. Rather, TEM cell survival correlated with higher levels of immediate γH2AX marking, immediate break binding and genome-wide open chromatin structure. T cells were able to mark DNA damage seemingly instantly (30 s), even if kept on ice. Relaxing chromatin with the histone deacetylase inhibitor valproic acid following radiation or etoposide treatment improved the survival of TCM and TN cells up to levels seen in the resistant TEM cells but did not improve survival from caspase-mediated apoptosis. We conclude that an open genome-wide chromatin state is the key determinant of efficient immediate repair of DNA damage in T cells, explaining the observed T cell subset radiosensitivity differences.


Assuntos
Inibidores de Histona Desacetilases , Subpopulações de Linfócitos T/enzimologia , Subpopulações de Linfócitos T/efeitos da radiação , Animais , Apoptose/imunologia , Apoptose/efeitos da radiação , Sobrevivência Celular/imunologia , Sobrevivência Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/imunologia , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta Imunológica , Relação Dose-Resposta à Radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Subpopulações de Linfócitos T/imunologia
20.
J Neurosci ; 33(43): 16924-9, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24155298

RESUMO

Axons can be depolarized by ionotropic receptors and transmit subthreshold depolarizations to the soma by passive electrical spread. This raises the possibility that axons and axonal receptors can participate in integration and firing in neurons. Previously, we have shown that exogenous GABA depolarizes cerebellar granule cell axons through local activation of GABA(A) receptors (GABA(A)Rs) and the soma through electrotonic spread of the axonal potential resulting in increased firing. We show here that excitability of granule cells is also increased by release of endogenous GABA from molecular layer interneurons (MLIs) and spillover activation of parallel fiber GABA(A)Rs in mice and rats. Changes in granule cell excitability were assessed by excitability testing after activation of MLIs with channelrhodopsin or electrical stimulation in the molecular layer. In granule cells lacking an axon, excitability was not changed, suggesting that axonal receptors are required. To determine the distance over which subthreshold potentials may spread, we estimated the effective axonal electrical length constant (520 µm) by excitability testing and focal uncaging of RuBi-GABA on the axon at varying distances from the soma. These data suggest that GABA(A)R-mediated axonal potentials can participate in integration and firing of cerebellar granule cells.


Assuntos
Potenciais de Ação , Axônios/fisiologia , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Axônios/metabolismo , Cerebelo/citologia , Cerebelo/metabolismo , Cerebelo/fisiologia , Interneurônios/metabolismo , Interneurônios/fisiologia , Camundongos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...